

Maths Makes Sense Schools Calculation Policy

"Everything that is taught earlier paves the way for everything that comes later; and everything that comes later is made accessible to all children by what has been taught earlier." Richard Dunne

Maths is a symbolic, abstract language. To decode this language, symbols need to come alive and speak so clearly to children that maths becomes as easy to understand as reading a story. Maths Makes Sense has a unique learning system that truly enables this to happen.

It makes maths concrete and fully understandable by making consistent use of tangible objects such as cups, cards and sticks, combined with exaggerated physical actions and a special vocabulary for each symbol. Maths Makes Sense children have an active, spoken and visual image of each maths concept.

As mathematical concepts are learnt in such a memorable way, they are understood from the start and are never forgotten.

The learning system builds deep understanding and embeds a picture of the maths in children's minds so they progress to thinking without the aid of physical objects; they refer to their mental images instead.

10 Big Ideas underpin the whole Maths Makes Sense learning system and are taught consistently throughout the school.

Introduced by age 7

- Addition
- Subtraction
- Multiplication
- Division
- Equals
- The symbols speak to you
- The logic of the language tells you the answer
- Denomination

Introduced after age 7

- Ratio
- Infinity

In essence, this policy captures effective whole-school approaches to developing securely pupils' calculation skills, using the four operations, mental and written.

It contains the key pencil and paper procedures that are to be taught throughout a Maths Makes Sense School to secure a coherent progression in the Big Ideas.

It has been written to ensure consistency throughout the school.

- Although the main focus of this policy is on pencil and paper procedures it is important to recognise that the ability to calculate mentally lies at the heart of numeracy.
- Mental calculation is not at the exclusion of written recording and should be seen as complementary to and not as separate from it. In every written method there is an element of mental processing.
- Written recording both helps children to clarify their thinking and supports and extends the development of more fluent and sophisticated mental strategies.
- The long-term aim is for children to be able to select an efficient method that is appropriate for a given task.

They should do this by always asking themselves:

- 'Can I do this in my head?'
- 'Can I do this in my head using drawings or right-hand margin jottings?'
- 'Do I need to use a written method?'

Mental strategies

These are taught in main teaching blocks and practiced through Daily Practice in MMS.

Fluency is achieved by practice throughout the day.
The mental strategies used MMS F, 1 and 2 including counting are described briefly in the block detail that follows.
For MMS 3-6 these continue to develop through Daily Practice Grades 1-24 in MMS 3-6. Jottings should be used to support mental calculation.

See MMS Teacher Guides for detail and of course these should be adapted to ensure appropriate challenge for all children.

Fluency is achieved through the daily rehearsal of addition facts and multiplication facts, progressively introduced by early KS2 all children should be able to state inverse subtraction facts and division facts and become confident in Reasoning with these with the Big Ideas of 'The logic of the language' and 'Denomination' to derive other facts for use in calculating with the 4 operations which obviously covers place value development, including ordering on a number line.

MMS approaches problem-solving indirectly.

Children are assisted to see how a Maths Story has an associated Real Story (it is about 'cups') which can be converted by simple substitution into a basic Real-Life Story (about some real-life object) which can then be embellished - a complex piece of writing that needs un-packing.

They are then in a better position for solving word problems.

Problem Solving approaches are introduced early and consistently so that all children can use and apply mathematics selecting steps appropriate to their stage, crucially identifying explicit information to work out the implicit, they 'Think About the Word Problem!'

Steps for 'Think About the Word Problem!'

1. Read the word problem.

- Find the question or instruction.
- Look for the explicit information.

2. Say what the basic Real- Life Story is about.

- Describe the context.
- Draw or act out the Real-Life Story.

3. Write the Maths Story.

- Act the Real Story with cups.

4. Speak the basic Real-Life Story.
5. Write the answer.

The calculation policy sets out only the mental and written progression in the four operations for Arithmetic and does not specify U\&A examples - please refer to Teacher Guides and Progress ladders for detail.

MMS Overview Progression in calculation strategies for the four operations

Stage	+	-	x	\div
MMS F	Horizontal 1-digit numbers then $1 / 21 / 4$ Mentally say 1 more than 0-99	Horizontal 1-digit numbers then $1 / 21 / 4$ Mentally say 1 less than 1-100		Share objects into equal groups count how many in each group.
MMS 1	Horizontal 1-digit numbers, zero and $1 / 21 / 4$ (inverse -) Horizontal with thousand/hundred /ty Vertical (no problem columns) 2 then 3 then 4digit	Horizontal 1-digit numbers, zero and $1 / 2$ $1 / 4$ (inverse +) Horizontal with thousand/hundred/ty Vertical (no problem columns) 2 then 3 then 4-digit	Horizontal 1-digit x 1-digit	Horizontal 1 digit :-1-digit (Type 1 Real Stories only) Find $1 / 2$ and $1 / 4$ of shapes
MMS 2	Use commutative law for addition Use inverse of addition to complete subtraction Maths Stories Vertical (no problem columns) 4-digit Horizontally Partition 4-digit to write addition maths story. Then vertical problem first column only	Vertical (no problem columns) 4-digit Then vertical problem first column only	Horizontal 1-digit, $1 / 2$, $1 / 4 \times 1$-digit Use commutative law for multiplication Introduce grid for 1-digitx1-digit Grid for 1000/100/ty x 1-digit (inverse \div)in preparation for long multiplication Use inverse of multiplication to complete division Maths Stories.	Horizontal 1-digit, $1 / 2,1 / 4$ Introduce grid for 1-digit \div 1-digit Calculate Type1 and Type 2 Division Real Stories Grid for 1000/100/ty $\div 1$ digit (inverse of divide is multiply) in preparation for long division Find $1 / 2$ and $1 / 4$ of numbers and objects in a set

MMS 3	Vertical 4-digit with one problematic column, $1^{\text {st }}$, then $2^{\text {nd }}$ then $3^{\text {rd }}$ Then problematic $1^{\text {st }}$ and $2^{\text {nd }}$ column Partition and rearrange numbers to calculate sums Horizontal 1-digit numbers, zero and $1 / 21 / 4$ and mixed numbers Horizontal with $1 / 5$ ths $1 / 7$ ths then decimal fractions (1dp) then negative numbers no tricky + or -	Vertical 4-digit with one problematic column, $1^{\text {st }}$, then $2^{\text {nd }}$ then $3^{\text {rd }}$ Partition and rearrange numbers to calculate differences Horizontal 1-digit numbers, zero and $1 / 2$ $1 / 4$ and mixed numbers Horizontal with $1 / 5$ ths $1 / 7$ ths then decimal fractions(1dp) then negative numbers, no tricky + or -	2-digit x 1-digit by partitioning and calculating sum of products and by a grid Ratio (Fractions of quantities) Percentages Horizontal with 1/5ths 1/7thsthen decimal fractions (1dp)then negative numbers, (neg x positive only) Type1 and Type 2 Multiplication Real stories.	1-digit with remainder expressed as a number and as a fraction Grid for 1000/100/ty $\div 1$ digit Horizontal with $1 / 5$ ths $1 / 7$ ths then decimal fractions (1dp) then negative numbers (neg \div neg only)
MMS 4	Vertical 4-digits with problematic $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ columns Horizontal with all vulgar fractions, decimal fractions (2dp) and negative numbers Add terms in expressions	Vertical 4-digits with problematic $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}$ columns Horizontal with all vulgar fractions, decimal fractions(2dp) and negative numbers Subtract terms in expressions	Grid for 2-digit x 2digit Use logic of language to deduce products of two multiples of ten and with decimal fractions (2dp) Read/write the value of powers of 10 Identify value of	Grid for 3-digit $\div 1$ digit Using both remainders and fractions Use logic of language to deduce division Maths Storiesfor products of of two multiples of ten; and with decimal fractions (2dp)

	Use x and y to add terms in algebraic expressions	Use x and y to subtract terms in algebraic expressions	multiplication terms in an expression to add/subt from left to right. Ratio \& percentages (Fractions of quantities) Equivalent fractions Horizontal with all vulgar fractions, decimal fractions (2dp) and negative numbers (neg x positive only)	Horizontal with all vulgar fractions, decimal fractions (2dp) and negative numbers (neg \div neg only as Type 1)
MMS 5	Vertical 4-digits and decimals with problematic columns Horizontal with all vulgar fractions, decimal fractions and negative numbers	Vertical 4-digits and decimals with problematic columns Horizontal with all vulgar fractions, decimal fractions and negative numbers	Grid long multiplication up to 3 digits by 2-digit with up to 2 decimal places, answers up to 3 dp Ratio \& percentages (Fractions of quantities) Equivalent fractions Conversion of units metric/imperial Identify factors/proper factors Horizontal with all vulgar fractions, decimal fractions and negative numbers (neg x positive only - the progression for neg x neg requires the	Grid long division with decimals Horizontal with all vulgar fractions, decimal fractions and negative numbers Neg $\div \operatorname{Neg}$ (Type 1) Neg \ddagger Positive(Type 2) Use divisibility tests

			teaching of the distributive law and further substitutions) Solve algebraic expressions $\text { eg } 2 x=6$	
MMS 6	As Y5 Use algebraic notation for sum $m+n$	As Y5 Use algebraic notation for difference $\mathrm{m}-\mathrm{n}$	Short method 3-digit x 2-digit Use algebraic notation for product $m n$ Ratio - \% increase/decrease measure probability	Short method 3- digit by 2-digit including remainders Use algebraic notation for quotient m / n

Maths Makes Sense

Progression in Arithmetic Calculation Strategies

MMS F to MMS 6

NB For U\&A see Teacher Guide and Progress Ladder detail

MMS F		
Block 1	Counting one to one correspondence to 10 (and beyond) Point to resources/maths table How many cups? Say number	
Block 2	Count forward and back on a number line to 10 Say one more/less than for 1 digit numbers Addition one-digit numbers. Get ready to get some more Look at the maths table and count How much is there here? Say [number]cups Introduce Act the Real story and Act the Basic Real-life story	$2+1+1=4$
Block 3	Count forward backward 0-30 (and beyond) Addition and subtraction one-digit numbers and zero. Get ready to take away I speak the maths story, you act the real story and vice versa Look at the Maths Story, read what it says Look at the Maths Story, read what it means Introduce 'The board will speak to you!' Introduce personal maths tables	$3-1+2-0+1=5$
Block 4	Share up to 15 objects equally Addition and subtraction one-digit and 0 Introduce copy the Maths Story I act the Real Story you write the Maths Story Introduce You will write the maths story	$3-1+2-0+1=5$
Block 5	Say 1 more than for number to 20 Recognise symbol $1 / 2$ say a half or one half Introduce 'Oooo! The Glue!'To stick two half cups to make a whole cup Addition and subtraction one-digit and $1 / 2$ Act out addition and subtraction Real-life Stories	$3-1+1 / 2+0+1 / 2=3$

Block 6	Count to 99(and beyond)	
	Recognise symbol $1 / 4$ and say a quarter or one quarter	
	Addition and subtraction one-digit and $1 / 2 \& 1 / 4$	$1 / 4+1+1 / 2-1 / 4+1 / 4+1 / 4=2$

MMS 1

Block 1	Count on and back in ones on a 0-99 grid Find one more than and add one on a 0-99 grid Find one less than and take away one on a $0-99$ grid Addition and subtraction single-digit and $1 / 2$ \& $1 / 4$ Distinguish between how many and how much by responding accurately to the questions How many cups did I count? e.g. Six, and How much is there here? e.g. Six cups Identify and use the phrase Same Value: Different Appearance for different arrangements of cups, which have the same value, including half cups and quarter cups	$3-1+1 / 2+1 / 4+1 / 4-1=2$
Block 2	Find one more or less than a 2-digit whole number Find one more or less than and add or take away one for 3-digit whole numbers Convert 1-digit Maths Stories into new Maths Stories about ty, hundred and thousand (N.B. practice number bonds to 10) 1. Add / Sub with thousand / hundred / ty 2. Multiplication (1-digit x 1-digit). 3. Say and show bigger, smaller and the difference between by encircling cups on the Maths Table Continue to use method in subsequent Daily Practice with subtraction.	$\begin{aligned} & 1.3000+2000=5000 \\ & 500-200=300 \\ & 40-20=20 \end{aligned}$ 2. $2 \times 4=8$ 3. With 5 cups on Maths table Write - Now write 5 - Write $5-\mathbf{3}=$ Write 5-3 = 2 Say the difference between 5 and 3 equals 2 using take away action and hand to encircle' how much' for each part of the Maths Story Now model 5-2 = 3

Block 3	Practice addition and subtraction for pairs of numbers with totals up to ten and twenty 1. Vertical addition (2-digit +2 -digit, no problematic columns). N.B. Continue to practice addition bonds to 10 2. Division (for 1-digit whole numbers).	$\begin{array}{r} \text { 1. } 32 \\ +\underline{21} \\ \hline \end{array}$ 2. $6 \div 2=3$
Block 4	Practise the two, five and ten times tables and continue throughout KS1 and beyond Double numbers in different ways to 20 Use number pairs with totals to 20 for doubling Double numbers in different ways Use pairs of numbers with totals to 20 to make Maths stories about ty, hundred and continue throughout KS1 and beyond 1. Vertical addition and subtraction (2 and 3digit) (no problematic columns). 2. Addition and subtraction single-digit and $1 / 2$ \& $1 / 4$ 3. Multiplication and division (1-digit). Say what a basic Real-life Story is about. Give the context. Draw the Real-life story. Use a Maths Story to make up a Real-life story and embellish.	$\begin{array}{r} 241 \\ -122 \\ \hline 363 \\ \hline \end{array}$ $3-1+1 / 2+1 / 4+1 / 4-1=2$ $\begin{array}{ll} 2 \times 6=12 & 6 \div 2=3 \\ 3 \times 4=12 & 8 \div 1=8 \end{array}$
Block 5	Count on and back in 1's on 0-99 grid Recognise odd and even numbers Count \& Recognise multiples of 2,5 \& 10 Shade halves and quarters 1. Vertical additions and subtractions with any pair of 2-digit, 3-digit or 4-digit whole numbers (no problematic columns). From an embellished Real-Life Story, find and write an addition or subtraction Maths Story with 1-digit whole numbers Give change from ten pence in a shopping context	$\begin{array}{r} 3486 \\ -\quad 13 \\ \hline+\quad 412 \\ \hline \underline{3473} \\ \hline \end{array}$

	Cut shapes into halves and quarters by drawing lines accurately Shade half, a quarter and three quarters of a shape.	
Block 6	Estimate numbers of objects using groups of five Read and complete additions, subtractions and, multiplications on flow diagrams 1. Use the correct operation and calculate vertical additions and subtractions with 2-digit, 3-digit or 4-digit whole numbers (no tricky columns) Answer a simple word problem Story involving addition or subtraction with 1-digit whole numbers by finding the Maths Story.	$\begin{array}{rr}3486 & 2143 \\ -\quad \underline{213} & +2412 \\ \underline{3273} & \underline{4555}\end{array}$

MMS 2		
Block 1	Mentally Add subtract 10 or 20 and find 10 or 20 more/less Order 1 and 2 digit number on number line 1. Vertical addition and subtraction (4-digit) (no problematic columns). 2. Add / Sub / Mult / Div (1-digit / $1 / 2 / 1 / 4$).	
Block 2	Add 1 digit number to 8 or 9 use cups/number line Use number line for addition strategies Practice number pairs with 2-digit totals 1. Vertical addition and subtraction (4-digit) (addition with problematic first column, introduce FUNNY WRITING). 2. Add / Sub / Mult / Div (1-digit). 3. Introduce mult/div grids for 1 -digit numbers.	$\begin{array}{r} 3739 \\ +2222 \\ \hline 5961 \\ \hline \end{array}$ funny writing$2 \times 4-1 / 2 \times 4=6 \quad 11 / 2 \div 1 / 2=3$$2 \times 4=8$$x$ 4 2 8$8 \div 2=4$$\div$ 4 2 8
Block 3	Practice and memorise addition facts at random and addition pairs to 20 Memorise 2x table 1. Vertical addition and subtraction (4-digit) (add and sub with problematic first column use funny writing and introduce funny counting). 2. Add / Sub / Mult / Div (1-digit). 3. Use mult/div grids for 1 -digit numbers.	
Block 4	Find Complements of 5 and 10 Find missing numbers to make 10 ;and to complete a multiplication/division Maths story; to complete a sequence; find missing tens or units number to complete a Maths Story Investigate general statement about a missing number Maths Story	

	1. Vertical addition and subtraction (4-digit) (add and sub with problematic first column use funny writing and funny counting). 2. Add / Sub / Mult / Div (1-digit). 3. Use mult/div grids for multiples of 10,100 and 1000 by 1 -digit number 4. Use inverse nature of mult / div. 5. Say whether a division Real Story is Type 1 or Type 2	1 and 2 as above 3) 4) 5. Type 16 cups $\div 2$ cups $=3$ Type 2 6cups $\div 2$ = 3cups
Block 5	Multiply, Add \& subtract 1-digit whole numbers cumulatively Solve simple equations for all 4 operations Round up/down to nearest 10 Estimate answers to calculations 1. Vertical addition and subtraction (4-digit) (add and sub with problematic first column use funny writing and funny counting). 2. Add / Sub / Mult / Div (1-digit). 3. Use mult/div grids for multiples of $10,100,1000$ by 1 -digit no. 4. Use inverse nature of mult / div..	1) 2) and 3) as above 4) 17x11=187 (given) $187 \div 17=11$ (derived)
Block 6	Use symbols < > for inequality Add 1 and 2-digit numbers mentally Estimate a number of objects and answers to calculations Practice using a calculator to to multiply and divide 1. Vertical addition and subtraction (4-digit) (add and sub with problematic first column use funny writing and funny counting). 2. Add / Sub / Mult / Div (1-digit). 3. Use mult/div grids for $2 / 3 / 4$-digit numbers by 1 -digit no. 4. Use inverse nature of mult / div. 5. Use a Maths story e.g. $3 \times 4=12$ with Type 1 and type 2 Real stories to write Maths stories about thousand, hundred and ty	1) 2) 3) and 4) as above 5. $3000 \times 4=12000$ and $3 \times 4000=12000$ etc

MMS 3-6 Mental Strategies

These continue to develop through main teaching and in Daily Practice Grades 124 in MMS 3-6 and include ordering number, using all four operations in contexts, Geometry facts and measure conversions.

See Teacher Guides overview charts for detail, these of course should be adapted to ensure appropriate challenge for all children.

Identified gaps should be included in daily practice.
Multiplication (and division as inverse) is practised daily:
MMS3 B2 Grade 2 the 3 and 4 times table are practised alongside 2,5, and 10, MMS3 B5 Grade 5 the 6 times table (double 3)
MMS4 B1 Grade 7 doubling is practised (include using known tables)
MMS4 B3 Grade 9 the 7 and 9 times tables
MMS4 B4 Grade 10 the 8 times table
MMS5 B1 Grade 13 the 11 and 12 times table.
No ceiling is applied and the expectation is that all children will learn all table facts to 10×10 by the end of Y4. This needs to extend to 12×12 to meet NC2014 and is practised in MMS5 \& 6.

MMS 3-6 Written strategies follow.

MMS 3

Block 1	1)Copy \& calculate vertical add/sub (4digits) (with problematic first column use funny writing and funny counting) 2)Understand the difference between 'I will act the real story/ you write the maths story for + and - with 1-digit and halves, quarters and mixed numbers. 3)Calculate fractions of quantities using cups. Spoken instructions are smaller/ bigger/ same - compare ratio sticks. What does it mean? Compare sticks every time you see...replace with.... Replace cups in response to ratio sticks.	$\begin{array}{r}3739 \\ +2222 \\ \hline 5961 \\ \hline 1\end{array} \begin{array}{r}83^{3} 4^{1} 5 \\ \hline\end{array}$ 2) $11 / 2+2-1 / 4=31 / 4$ 3) $11 / 7$ of $14=22$
Block 2	1)Write maths stories using vertical add/sub (4-digits) with problematic tens column -use funny writing and funny counting. 2)Use $+/-/ \times / \div$ with 1 -digit and fifths. 3) Solve word problems including fractions of quantities. Embellish a basic real life story/ distinguish between explicit \& implicit information/ recognise the ratio as smaller/bigger/ same. Use cups or jottings to calculate the answer.	1) $\begin{array}{rr} 5^{3} 454 \\ -1261 \\ \hline \end{array} \quad+\frac{3684}{315} 5$ Making the impossible... possible! Writing 'one-ty three' 2) $\begin{aligned} & 2 / 5 \times 2=4 / 5 \\ & 6 / 5 \div 1 / 5=6 \\ & 2 / 5 \times 3-4 / 5=2 / 5 \end{aligned}$
Block 3	1)Vertical add/sub (4-digits) (with problematic first and second columns use funny writing and funny counting). 2)Multiply a 2-digit by 1 -digit number by partitioning and calculate sum of the products. 3)Multiply a 2 -digit by 1 -digit number using a grid method. 4)Use $+/-/ \times / \div$ with 1 -digit and fifths and sevenths and other denominations (not tricky). 5)Round 2 digit numbers to the nearest 10 and 3 digit numbers to the nearest 100 using a number line.	1)as blocks 1,2 2) $52 \times 7=50 \times 7+2 \times 7=350+14=364$ 3. 4) as Block 3
Block 4	1)Use $+/-/ \times / \div$ with 1 -digit negative numbers (no combining negative and	1) $\begin{gathered}-5--2=-3 \\ 2+-2=0 \quad-2 \times 4=-8\end{gathered}$

	positive unless the result is zero). 2) Write $+/-/ x / \div$ maths stories including fifths, sevenths \& other denominations with mixed numbers (no tricky denominations) 3) Write maths stories as vertical +/(with tricky unit \& tens columns) \& calculate. 4) Calculate division with remainders and express remainders as a fraction.	$-6 \div-2=3$ 4) $\begin{aligned} & 24 / 5+13 / 5=42 / 5=82 / 5 \\ & 2 / 11 \times 4-1 / 11 \times 2=4 / 11 \end{aligned}$ 5) $24 / 5+13 / 5=37 / 5=42 / 5$ $\text { 4) } \begin{aligned} 43 \div 5 & =8 \text { r } 3 \text { or } 83 / 5 \\ 8 \div 3 & =2 \text { r2 or } 22 / 3 \end{aligned}$
Block 5	1)Write vertical add/sub (4-digits) (with tricky unit, tens or hundreds columns use funny writing and funny counting) \& calculate answers. 2)Use $+/-/ \times / \div$ with 1 -digit negative numbers (with tricky combining positive and negative to give result other than 0) 3) Write $+/-/ x / \div$ maths stories including fifths, sevenths \& other denominations with mixed numbers (no tricky denominations) 4) Calculate $+/-/ \times / \div$ with tenths written as decimal fractions. 5) Calculate vertical $+/$ - including decimals (one decimal point only). 6) Write squares \& square roots using x maths stories for reference.	1) as blocks $1,2,3,4$ 2) $-3+-1=-4 \quad-5--2=-3$ $\begin{gathered} \text { 3) } 24 / 5+13 / 5=42 / 5=82 / 5 \\ 2 / 11 \times 4-1 / 11 \times 2=4 / 11 \\ \\ \cdot 3+\cdot 1=\cdot 4 \quad \cdot 7-\cdot 2=\cdot 5 \\ \cdot 2 \times 3=\cdot 6 \quad \cdot 6 \div \cdot 2=3 \end{gathered}$
Block 6	1)Use $+/-/ \times / \div$ including negative numbers (tricky for +/-). 2) Write maths stories to include $+/-/$ \times / \div using fifths \& other denominations with mixed numbers (not tricky denominations) 3)Write maths stories as vertical + / - (tricky unit, ten or hundreds column). 4)Recognise what operation is needed to solve a word problem.	1) to 6) As above

MMS 4					
Block 1	1)Calculate maths stories $+/-/ \times / \div$ with mixed numbers, 1-digit, halves \& quarters using cups. 2)Use mental strategies to calculate maths stories $+/-/ \times / \div$ with mixed numbers, 1digit , halves \& quarters. 3) Use mental strategies to calculate maths stories $+/-/ \times / \div$ with vulgar fractions \& mixed numbers \& negative numbers. 4)Multiply 2 digit by 2 digit whole numbers using a grid method.	1) 2 2) $1 / 2$ 3)- 2 4) 24 $\begin{array}{r} x \\ \hline 20 \\ 4 \end{array}$	$11 / 4$ $-1 / 4$ $+-1 \times 4$ $=600$ 20 400 $\underline{100}$ $\underline{500}$	$\begin{array}{r} 1 / 4= \\ =1 \\ =-1 \\ \\ =-1 \\ 5 \\ \hline 80 \\ \underline{20} \\ \hline 100 \end{array}$	$\begin{array}{r} 500 \\ +\underline{100} \\ \underline{600} \\ \hline \end{array}$
Block 2	1)Read \& write decimal fractions to 3 decimal places. 2) Read \& write numbers in decimal notation (3 places) as vulgar fractions using tenths, hundredths or thousandths. 3)Use mental calculations for combined $+/-/ x$ with decimal fractions. 4)Use mental calculations for dividing decimal fractions (not tricky). 5)Use mental calculations for $+/-/ \times / \div$, and combinations of + and - with x, using vulgar fractions, mixed numbers \& negative numbers (not tricky	1) 0.	$1, .41$ as -. 01 $2=3$ $-1 / 4 \times$ 1 1/5	$41,$ tenth = 1 $12 / 5$	1 write 1/
Block 3	1)Vertical +/- with 4 digit numbers (no tricky columns). 2)Vertical +/- with decimal fractions (no tricky columns). 3)Multiply 2 digit by 2 digit numbers using a grid. 4)Use mental calculations for maths stories using fractions, mixed numbers \& negative numbers (not tricky). 5)Rearrange +/- to make calculating easier.	1) $+$ 2) $+$ 3) 2 x 20 4	58 9 58 21 79 $5=600$ 20 400 $\underline{100}$	$\begin{array}{r} 5 \\ \hline 80 \\ \underline{20} \\ \underline{100} \\ \hline \end{array}$	$\begin{array}{r} 500 \\ +\underline{100} \\ \underline{600} \\ \hline \end{array}$

		$\text { 2) } \begin{aligned} & 3 / 5 \times 6=18 / 5 \\ & 11 / 5+32 / 5=43 / 5=83 / 5 \end{aligned}$ $\begin{aligned} & 5) 123-345+425-113= \\ & 123+425-345-113= \\ & 558-458=100 \end{aligned}$
Block 4	1)Vertical + / - with decimal fractions (any column tricky). 2) Use a grid for long \div, dividing 2 or 3 digit number by a 1 digit number, using both remainders \& fractions.	1) as previous blocks but with a tricky column using funny writing (+) or funny counting (-) 2) See TG for all steps
Block 5	1)Use mental calculations to work out whole number \% of a whole number quantity (no tricky examples). 2)Calculate the decimal number \% of a whole number quantity using a calculator. 3)Round a decimal fraction using tenths \& hundredths to the nearest whole number.	1) 4% of $800=32$ 2) 5.3% of $400=21.2$ 3) $15.2 \approx 15$
Block 6	1)Use 'one add negative one equals zero' $\left(1+{ }^{-} 1=0\right)$ with tricky $+/$. 2) Grid to multiply two 2 digit whole numbers (TU xTU). 3)Grid for long division, dividing a 3 digit whole number by a 1 digit whole number using both remainders \& fractions for remainders. 4)U\&A $+/-/ \times / \div$, fractions of quantities, $\%$ of quantities \& the sum of two products. 5)Use symbol \approx for 'approximately equal to'. 6)Round an answer with two decimal places to nearest one decimal place.	1) $3+-1=2$ and $4-{ }^{-} 2=6$ 2)as Blocks 1,3 3)as Block 4 $727 \div 6=121 \mathrm{r} 1$ or $1211 / 6$ 4)3/4 of 12 metres? 5.3% of 640 ? $3 \times 23+2 \times 35=?$ 5) $23.96 \approx 24$ 6) $33.92 \approx 33.9$

MMS 5

Block 1	1)Vertical +/- (4-digits) (with more than one tricky column -use funny writing and funny counting). 2) Use $+/-/ \div$ with all vulgar fractions or mixed numbers with the same denominator. 3) x / \div vulgar fractions \& mixed numbers by a whole number.	1) see MMS4
Block 2	1)Write 2,3 or 4 digit numbers vertically, up to 3 decimal places \& calculate with more than one tricky column - using $+/$. 2)Multiply 2 vulgar fractions where the denominator of one \& the numerator of the other are equal.	1)see MMS4 2) $2 / 3 \times 3 / 5=2 / 5$ replace 5 with 3 ; replace 3 with 2 ... SVDA replace 5 with 2.
Block 3	1)Recognise that $a \div b$ is SVDA as a / b and that they can be used interchangeably . 2)Convert vulgar fractions to finite decimal fractions using the division button on a calculator (no vulgar fractions with infinite decimal equivalents). 3)Use $+/-/ \times / \div$ with combinations of positive \& negative numbers, including tricky examples (but not the product of 2 negative numbers).	1) $5 \div 8=5 / 8$ 2) $1 / 4=0.25 ; 4 / 5=0.8$ 3) $\begin{array}{ll} 2--3=5 & 1+-4=-3 \\ -2 \times 3=-6 & -4 \div-2=2 \text { (type 1) } \\ & -4 \div 2=-2 \text { (type 2) } \end{array}$
Block 4	1))Distinguish between a basic product \& a derived product. 2) Grid for long x with up to 2 digit by 2 digit whole numbers. 3) Grid for long x up to 3 digit by 2 digit decimal numbers (one or two decimal places) answers up to 3 decimal places.	1) $7 \times 3=21$ basic product $70 \times 3=210$ (21-ty derived product) 2) and 3) extend MMS4 Blocks 1,3 use basic \& derived products
Block 5	1)Grid for long division including numbers up to 3 digits divided by 1 digit whole numbers. 2)Evaluate terms in an expression with brackets	1)as MMS4 Blocks 4,6 $2)(2 \times 3)+(1 \times 2)=6+2=8$

		$\begin{aligned} & 2 \frac{3}{5}-1 \frac{4}{5}=\frac{4}{5} \\ & \frac{1}{10}+\frac{3}{5}=\frac{7}{10} \\ & \frac{3}{8}+\frac{1}{8}=3 \\ & \frac{7}{8}-\frac{1}{4}=\frac{5}{8} \\ & \frac{1}{4} \times 5=1 \frac{1}{4} \\ & \text { 2) } \\ & 3) 10^{2}=10 \times 10=100 \\ & 9.3^{2}=9.3 \times 9.3=86.49 \\ & 100-86.49=13.51 \end{aligned}$
Block 5	1)Use formulas for diameter, circumference \& area of a circle. 2)Use formula to find the area of a triangle. 3) Use formula to find the volume of a cuboid \& a cylinder.	$\begin{aligned} \text { 1)D } & =2 \times \text { radius } \\ C & =2 \times \pi \times r \\ A & =\pi \times r^{2} \\ \text { 2) } A & =1 / 2 \times b \times h \\ \text { 3) } V & =\pi \times r^{2} \times h \text { (cylinder) } \end{aligned}$
Block 6	1)Write vulgar fraction as a decimal fraction to 3 decimal places, using a calculator for division. 2)Convert decimal fractions to vulgar fractions using tenths, hundredths \& thousandths. 3)Write recurring infinite decimals as abbreviations using 'dots' notation above one or two digit.	1) $7 / 11=.636$ 2). $625=625 / 1000$ 3)write $.83333333 \dot{3} \ldots \text { as } .8 \dot{3}$

